
INDUSIGHTS
DRIVING INDUSTRIAL INSIGHTS

E-published

From Drills to Digital Twins: A Mining 4.0 transformation

A. Castanheira Mendonça

October 2025
Case Study
Industrial Automation | Mining

Legal Notice and Report Information

Title	From Drills to Digital Twins: A Mining 4.0 transformation
Report Reference	CS20251001
Report Type	Case Study
Version	1
Number of slides	11
Publication date	01/10/2025
Author	A. Castanheira Mendonça
Approved by	J. Roberts Ornaf

© 2025 Indusights.
All rights reserved.

The information herein is based on sources believed to be reliable and reflects the best available knowledge at the time of publication.

INDUSIGHTS Ltd.
Registered in England
and Wales.
Company No. 16710788

Registered office:
Indusights Ltd.
Ealing Cross,
85 Uxbridge Rd,
London W5 5TH
United Kingdom
backoffice@indusights.com

TABLE OF CONTENTS

From Drills to Digital Twins: A Mining 4.0 transformation

01	Introduction	04
02	Background For a Bold Decision	05
03	Operational Challenges	06
04	A Four-Phase Road Map	07
05	A Three-Year Implementation Journey	08
06	ROI for a mid-size mining site transformation	09
07	Take Away for the Industry	10
08	About this case study	11

Introduction: A journey into Mining 4.0

A mid-sized mining company in Western Australia has undergone a sweeping digital transformation.

Initially implementing automated drilling systems, the company gradually expanded into autonomous haulage, IoT-enabled monitoring, and AI-driven decision-making.

Within three years, The project achieved:

- **22%** reduction in operating costs
- **15%** improvement in ore recovery rates
- **18%** reduction in CO₂ emissions
- **0%** safety incidents in its automated operations.

Background For a Bold Decision

01 ►

The company already operated
three underground gold mines
and one open-pit site.

Employing more than **1,200 people**,
the company had long been
recognised for its reliable
production but was facing
increasing challenges.

02 ►

- **Labour shortages** in skilled mining roles
- **Safety risks**
- Rising **operational costs**,
- Pressure from regulators and investors to **demonstrate sustainable practices**

03 ►

The leadership team concluded
that conventional methods were
insufficiently efficient and chose to
embrace a broader Mining 4.0
strategy that would embed
digitalisation, robotics, and artificial
intelligence into the core of its
operations.

Operational Challenges Led to the Choice of an Integrated Solution

- **Heavy reliance on manual labour** for drilling, blasting, and haulage, which drove up costs and created vulnerability to workforce shortages.
- **Safety concerns**, particularly in underground drilling and transport operations, where workers were exposed to hazardous conditions.
- **Inefficient haulage operations**, with diesel trucks contributing to high costs and carbon emissions.
- **Lack of real-time visibility into mine conditions**, limiting the ability to make fast, data-driven decisions.

A Four-Phase Road Map

Automation of Drilling

Expanded the use of **autonomous drilling rigs**.

First piloted in 2022, across all three mines.

Data, AI, & Digital Twins

Deployed a digital twin of underground operations, enabling scenario modelling and predictive maintenance.

Used AI analytics to optimise drilling patterns, haulage routes, and energy use.

Established a centralised 5G control room.

Robotics & IoT Integration

Introduced autonomous haulage trucks and Autonomous Mobile Robots (AMRs).

Robots deployed for both haulage and hazardous drilling/blasting activities.

IoT sensors monitored fuel use, wear, and environmental conditions.

Sustainability Initiatives

Began transition of haulage fleet from diesel to electric and hydrogen-powered trucks.

Leveraged IoT to track emissions, water use, and tailings management in real time.

A Three-Year Implementation Journey

"Workforce training was critical to the transformation's success. One of the toughest challenges was upskilling drill operators and truck drivers for the new technical environment."

While initial scepticism was high, employees ultimately embraced the shift as it improved safety and created new career pathways.

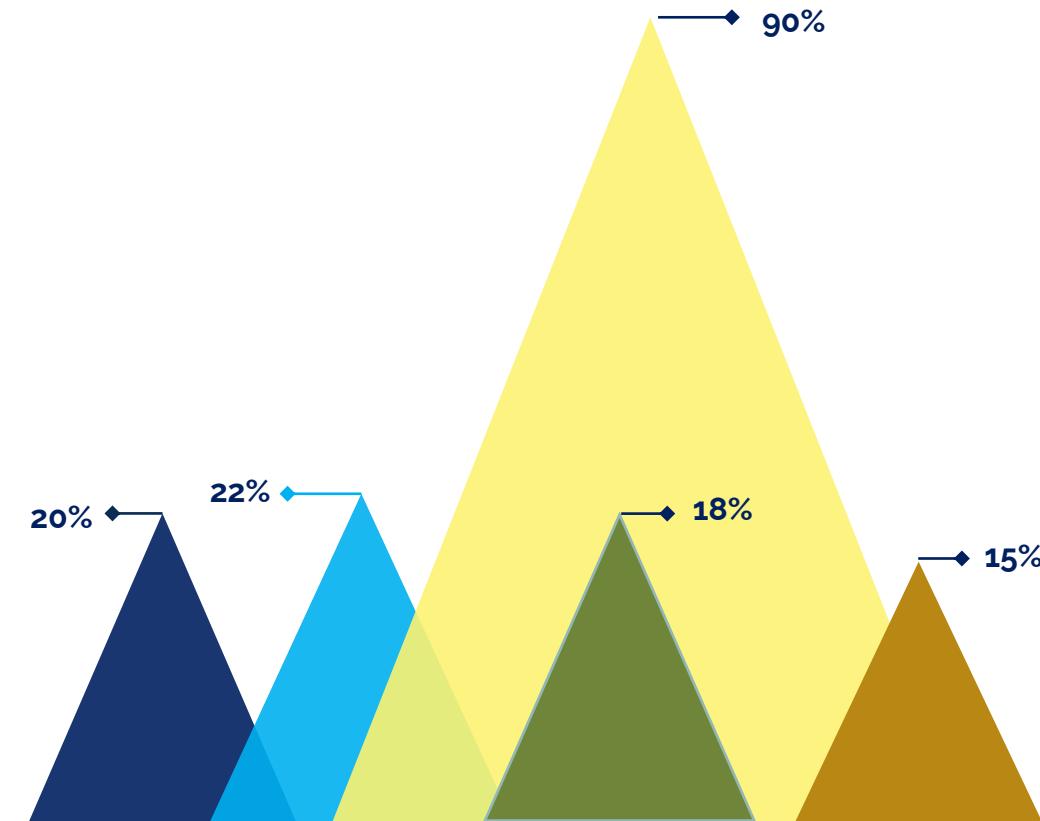
01

The pilot mine

Piloted 2 autonomous haul trucks and expanded automated drilling at one mine.

02

Robotics put at work


Rolled out 20 autonomous haul trucks and introduced robotic exploration drones for unsafe zones.

03

Digital tech at test

Final integration of IoT systems, digital twin, and transitioned part of the fleet to electric haulage.

ROI for a mid-size mining site transformation

KPIs reflect performance after 12 months of operation

1

Ore Transport +20%

Increased volume of ore transported per shift due to optimised haulage scheduling.

2

Operational Costs -22%

Equivalent to annual savings of approximately \$30 million, driven by automation and energy optimisation.

3

Drilling Accuracy +90%

Enhanced targeting precision through AI-optimised drill pattern algorithms.

4

Ore Recovery +15%

Improved extraction rates through better drill-and-blast control and real-time geodata feedback.

5

Greenhouse gas -18%

Resulting from partial fleet electrification and real-time energy consumption monitoring.

0% safety incidents in automated operations

Take Away for the Industry

Mid-sized players can achieve outsized returns

This transformation shows that even a mid-sized mining operator can unlock significant ROI through cost savings, productivity gains, and decarbonisation by adopting Mining 4.0 technologies.

Automation drives measurable gains

The use of robotics, IoT, AI, and digital twins led to improvements in safety, operational visibility, and ore recovery, delivering quantifiable value within three years.

Success depends on people and partnerships

Progress was enabled by strong technology partnerships, a phased implementation roadmap, and an inclusive retraining programme to upskill legacy roles.

Cybersecurity and capital investment are strategic enablers

An upfront investment (~\$70M) and robust IoT security frameworks were key to ensuring continuity and resilience across connected operations.

About this case study

This case study is based on a real digital transformation led by a mid-sized mining company in Western Australia. For confidentiality reasons, identifying details have been anonymised.

It forms part of a broader research initiative by Indusights, focused on automation, data integration, and operational performance across industrial sectors.

© Indusights. Case Study ID:
CS20251001/1

Redistribution or commercial use without written permission is prohibited.

To learn more about our research or explore collaboration opportunities, visit www.indusights.com or contact info@indusights.com